Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. The response of the hydrological cycle to anthropogenic climatechange, especially across the tropical oceans, remains poorly understood due to the scarcity of long instrumental temperature and hydrological records. Massive shallow-water corals are ideally suited to reconstructing past oceanic variability as they are widely distributed across the tropics,rapidly deposit calcium carbonate skeletons that continuously record ambient environmental conditions, and can be sampled at monthly to annualresolution. Climate reconstructions based on corals primarily use the stable oxygen isotope composition (δ18O), which acts as a proxy for sea surface temperature (SST), and the oxygen isotope composition ofseawater (δ18Osw), a measure of hydrological variability. Increasingly, coral δ18O time series are paired with time series of strontium-to-calcium ratios (Sr/Ca), a proxy for SST, from the same coral to quantify temperature and δ18Osw variabilitythrough time. To increase the utility of such reconstructions, we presentthe CoralHydro2k database, a compilation of published, peer-reviewed coral Sr/Ca and δ18O records from the Common Era (CE). The database contains 54 paired Sr/Ca–δ18O records and 125 unpaired Sr/Ca or δ18O records, with 88 % of these records providing data coverage from 1800 CE to the present. A quality-controlled set of metadata with standardized vocabulary and units accompanies each record, informing the useof the database. The CoralHydro2k database tracks large-scale temperatureand hydrological variability. As such, it is well-suited for investigationsof past climate variability, comparisons with climate model simulationsincluding isotope-enabled models, and application in paleodata-assimilation projects. The CoralHydro2k database is available in Linked Paleo Data (LiPD) format with serializations in MATLAB, R, and Python and can be downloaded from the NOAA National Center for Environmental Information's Paleoclimate Data Archive at https://doi.org/10.25921/yp94-v135 (Walter et al., 2022).more » « less
-
Abstract The tropical Pacific influences climate patterns across the globe, yet robust constraints on decadal to centennial‐scale climate variations are difficult to extract from sparse instrumental observations in this region. Oxygen isotope (δ18O) records from long‐lived corals enable the quantitative reconstruction of tropical Pacific climate variability and trends over the twentieth century and beyond, but such corals are exceedingly rare. Here, we use multiple short coral δ18O records to create a coral ‘ensemble’ reconstruction of twentieth century climate in the central tropical Pacific. Ten U/Th‐dated fossil coral δ18O records from Kiritimati Island (2°N, 157°W) span 1891 CE to 2006 CE, with the younger samples enabling quantitative comparison to a large ensemble of modern coral records and instrumental sea surface temperature. A composite record constructed of modern and fossil Kiritimati coral δ18O records shows a shift toward warmer and fresher conditions from 1970 CE onward, consistent with previously published records in this region.more » « less
-
Abstract Coral oxygen isotopes (δ18O) from the central equatorial Pacific provide monthly resolved records of El Niño‐Southern Oscillation activity over past centuries to millennia. However, calibration studies usingin situdata to assess the relative contributions of warming and freshening to coral δ18O records are exceedingly rare. Furthermore, the fidelity of coral δ18O records under the most severe thermal stress events is difficult to assess. Here, we present six coral δ18O records andin situtemperature, salinity, and seawater δ18O data from Kiritimati Island (2°N, 157°W) spanning the very strong 2015/16 El Niño event. Local sea surface temperature (SST) anomalies of +2.4 ± 0.4°C and seawater δ18O anomalies of −0.19 ± 0.02‰ contribute to the observed coral δ18O anomalies of −0.58 ± 0.05‰, consistent with a ∼70% contribution from SST and ∼30% from seawater δ18O. Our results demonstrate that Kiritimati coral δ18O records can provide reliable reconstructions even during the largest class of El Niño events.more » « less
An official website of the United States government
